
An Odd Couple: Loss-Based Congestion Control
and Minimum RTT Scheduling in MPTCP

Ralf Lübben
Flensburg University of Applied Sciences

Flensburg, Germany
Email: ralf.luebben@hs-flensburg.de

Johannes Morgenroth
Robert Bosch GmbH
Hildesheim, Germany

Email: johannes.morgenroth2@de.bosch.com

Abstract—Selecting the best path in multi-path heterogeneous
networks is challenging. Multi-path TCP uses by default a
scheduler that selects the path with the minimum round trip
time (minRTT). A well-known problem is head-of-line blocking
at the receiver when packets arrive out of order on different
paths. We shed light on another issue that occurs if scheduling
have to deal with deep queues in the network. First, we highlight
the relevance by a real-world experiment in cellular networks
that often deploy deep queues. Second, we elaborate on the
issues with minRTT scheduling and deep queues in a simplified
network to illustrate the root causes; namely the interaction of
the minRTT scheduler and loss-based congestion control that
causes extensive bufferbloat at network elements and distorts
RTT measurement. This results in extraordinary large buffer
sizes for full utilization. Finally, we discuss mitigation techniques
and show how alternative congestion control algorithms mitigate
the effect.

Index Terms—bufferbloat, multi-path TCP, buffer dimension-
ing, congestion control

I. INTRODUCTION

Availability of multiple paths between a source and des-
tination open up the possibility of combining these paths
for optimal forwarding of packets. Optimization criteria may
vary based on the use cases. For example, such criteria are
maximizing throughput, increasing reliability, or minimizing
delay. Various approaches exists in networking to combine
different paths for a better performance. Link aggregation
in Ethernet, Equal Cost Multiple Routing (ECMP) in IP
networks, or transport layer approaches as Multi-Path TCP
(MPTCP), MPQUIC, the multi-path extensions to Quick UDP
Internet Connections (QUIC) [1], [2] and the Stream Control
Transport Protocol (SCTP) [3] that implements concurrent
multipath transfer in CMT-SCTP [4].

Link aggregation and ECMP often distribute flows over
multiple paths but avoid splitting up the flow itself. The
reason is that if different paths have unequal latency or
bandwidth, massive reordering of packets may degrade the
flow performance.

To combine multiple paths, approaches on the transport
layer are promising to overcome such limitations. Multi-
path protocols on the transport layer, such as CMT-SCTP,
MPQUIC, and MPTCP, are aware of heterogeneous path
characteristics, e.g. by RTT measurements for individual paths,
and allow for reordering of packets at the receiver splitted up
before on multiple subflows.

In this paper, we focus on MPTCP [5] and its default
scheduler for aggregation of all available paths. MPTCP
establishes multiple TCP subflows between a sender and a
receiver if multiple paths are available. The default scheduler
in MPTCP distributes the packets to these different subflows
based on the minimum round trip time (minRTT). First, it
fills up the subflow with the minimum RTT. If the path is
filled up, indicated by a full utilization of the congestion
window (CWND) of that subflow, it takes the subflow with the
next higher RTT and so on. The CWND of each subflow is
typically controlled by a loss based congestion control protocol
as NewReno, Cubic or alternatives designed for MPTCP as
LIA, OLIA, Balia or xVegas [6], [7], [8], [9].

A well-known issue for MPTCP is head-of-line (HoL)
blocking at the receiver [10]. It stems from in-order delivery
of packets from the MPTCP socket to the application. If one
packet is missing due to delay or packet loss on one of the
paths, subsequent packets have to be queued at the receiver
in the MPTCP receive queue until the missing packet arrives.
This general issue already occurs for all reliable protocols that
deliver packets in order but multi-path protocols worsen it,
due to different delays on heterogeneous networks path. To
mitigate HoL blocking many different schedulers are designed,
e.g. [11], [12], [13].

In this paper, we contribute insights on an additional is-
sue that addresses the buffer size requirements for multi-
path protocols at the sender when queues in network are
deep. This effect is especially prevalent in cellular networks.
As presented, e.g. in [14], these networks include elements
with deep queues that can hold more than 1000 packets.
As we show in the following sections, deep queues impairs
the minRTT scheduling. On one hand, MPTCP is a viable
solution, to overcome performance limitation and reliability
of cellular networks that are prone to regional variations of
network quality and coverage. On the other hand, scheduling is
a tough challenge with quickly changing network conditions.
In the long run, MPTCP is also applicable for session and
service continuity as discussed in [15].

In detail, we show that the send buffer size at the sender is
an additional limiting factor for the throughput of all subflows
in such networks. In Sec. II-C, we demonstrate that buffer sizes
for a full utilization have to be much larger than recommended
in [16]. Concretely, the send buffer size must be larger than

doi: 10.1109/LCN44214.2019.8990831 c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



100

200

300

400

500
sr

rt
 [m

s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

0

50

100

150

200

th
ro

ug
hp

ut
 [M

B
it/

s]

P1
P2
P3
sum

Fig. 1. Throughput and sRTT of MPTCP utilizing three cellular network
operators P1, P2, and P3 in a real-world experiment. The sRTT often shows
an excessive increase that is about 10 times larger than the minimal RTT of
that path. Subsequent to the RTT increase the throughput often drops to zero,
which suggests a relation of increase of RTT and throughput degradation.

buffer sizes in the network to overwhelm these buffers and
to utilize more than one subflow. The linkage between queue
and send buffer sizes arises from loss-based congestion control
and is unlocked by the choice of alternative congestion control
algorithms.

We highlight the importance by an experiment in real-
world cellular networks. The measurement results are shown
in Fig. 1. It illustrates the throughput of MPTCP subflows and
the sum of all subflows between a greedy sender and a receiver
transmitted via three different cellular network operators. The
receiver is connected to the server via three different cellular
networks. These introductory results in Fig. 1 demonstrate that
the throughput of a single subflow drops to zero for prolonged
periods which goes along with an excessive increase of RTT.
This points out a relation between an increase of delay and
limited throughput of the subflows. The understanding of this
interaction is crucial since the default scheduler of MPTCP
use the RTT as metric to decide on which subflow to send a
packet.

To confirm this interaction of minRTT scheduling, loss
based congestion control, and deep queues, we contribute in
Sec. II-C an in-depth evaluation of the rationales of perfor-
mance impairment on a basic network scenario derived from
the cellular use case. The results shed light on shortcomings
regarding RTT measurements, bufferbloat and relating exhaus-
tion of the send buffer size. We further discuss mitigation
techniques to improve the performance by congestion control
selection and scheduler improvement. The results are trans-
ferable to further transport layer multi-path protocols, since
protocols implement similar congestion control algorithms,
scheduling disciplines, and memory space limitations.

The outline of the paper is as follows: Sec. II gives
a detailed evaluation on the performance impairments in

networks scenarios that use minRTT scheduling, loss based
congestion control in network with deep queues. Sec. III
demonstrates how effects are mitigated and performance is
improved. Sec. IV presents related work regarding buffer
management and congestion control for multi-path transport
layer protocols. Sec. V concludes the paper.

II. MINRTT SCHEDULING AND LOSS BASED CONGESTION
CONTROL

In this section, we present the impact of buffer sizes at
the sender and receiver and explain why the buffer space
limitations induce the effects explained in Sec. I. First, we
give a detailed description of the relation between memory
and send buffer size required for the upcoming sections.
Second, we describe the experimental setup. Thereafter, we
show experimental results of average MPTCP throughput in
a simplified scenario that is based on a cellular network.
These results highlight the impact of send and receiver buffer
dimensioning. We delve into these results and show root causes
of throughput degradation by an in-depth analysis of internal
parameters read from the MPTCP stack.

A. Send Buffer and Memory Structure

Various windows and buffer spaces regulate the throughput
of a TCP flow. The CWND refers to the number of packets to
be sent out without overloading the path, the receive window
advertises the memory space available at the receiver to the
sender. The sender stores it in the so called send window.

A third buffer space limiting the throughput is the memory
space available at the sender for a socket, called send buffer.
Note that this is different from the send window, which relates
to the memory available at the receiver.

The buffer has two different views, on one hand, the size
expressed in TCP sequence numbers that relate to individual
payload bytes, and on the other hand a memory view that
reflects the true size of bytes used and reserved in memory for
packet processing. Therefore, the true size in memory is much
larger than the payload size. We explain this relation here in
detail, since what usually is configured in operating systems
are memory limitations on the size that can be consumed by
a TCP socket. To understand the throughput limitation that
is caused by memory limit configuration, it is essential to
see how it translates to the sequence number space available.
Hence, this limits the maximal data in flight. In the following,
we adopt the notation as used in the Linux kernel.

Fig. 2 illustrates the structure of it in the view of sequence
numbers as well as the memory. Sequence numbers are
managed by the counters: snd_una, the lowest sequence
number not acknowledged, snd_nxt, the sequence number
used next, and write_seq, the next sequence number for
application data. The range from snd_una to snd_nxt
comprises data inflight but not acknowledged. The second
range snd_nxt to write_seq contains backlogged data
send from the application to the socket, but not yet sent to the
network. For details see [17].



Fig. 2. Structure of the TCP send buffer and ensuing memory consumption.
Each segment additionally consumes memory space for packet management,
denoted by sk_buff.

The actual allocated memory is larger than just the payload.
Each payload segment requires additional management data
for packet processing, denoted as data structure sk_buff.

Throughout the paper, the configuration of buffer sizes
refers to the memory size configuration and not the space of
sequence number, since the used operating system only allows
for the configuration of memory limits1

The values snd_una, snd_nxt, and write_seq indi-
cate wheter the connection is application limited, receive or
congestion window limited, or send buffer limited. If the appli-
cation does not utilize the connection snd_una are snd_nxt
are mostly equal. Only if the application generates data, the
snd_nxt is greater if there are packets in flight, snd_nxt
and write_seq are equal as long as packets can be sent di-
rectly. If the relation write_seq > snd_nxt > snd_una
holds, the connection is either limited by the CWND or the
receive window.

If the connection is limited by the send buffer size the
relation snd_una � snd_nxt = write_seq holds. The
complete sequence number space is exhausted and snd_nxt
as well as write_seq point to the end of the buffer. The
blocking and unblocking of the socket is managed by the
operation system by comparison of sk_mem_queued and
snd_buf that translate to the true memory size as shown in
Fig. 2. The operating system marks the socket as not writable,
i.e. out of memory space, if sk_mem_queued approaches
snd_buf. It is marked as writeable again, when the available
space falls below a threshold. The buffer size in terms of
sequence numbers can be read from snd_nxt - snd_una,
which is completely consumed in this state.

In the experimental results presented later, we
track snd_una, snd_nxt, write_seq, snd_buf,
sk_mem_queued and available states as if the connection
is CWND limited or the socket is not writable to evaluate the
TCP scheduling behavior.

1We refer here to the memory limits configured in the Linux kernel
with ’net.ipv4.tcp wmem= bmin bdefault bmax’ and ’net.ipv4.tcp rmem=
bmin bdefault bmax’, respectively. An example, where the send buffer size
snd_buf is dynamically adapted and grows to its maximum value bmax, is
shown in Fig. 5.

downstream traffic

Fig. 3. Network setup with two paths from the client to the server, each path
features a bandwidth of 30 Mbit/s and a delay of 100 ms. The queues at the
routers, which are connected to the client, can hold up to 3000 packets. This
is based on the fact that cellular networks provide also very deep queues.

B. Measurement Setup

For the evaluation of the root causes of the alternating
utilization demonstrated in Fig. 1, we setup a simplified
network topology as presented in Fig. 3. The network copies
major characteristics of cellular networks to achieve a realistic
performance degradation. The client is connected by two paths
to the server, whereas each path corresponds to a single
cellular connection. Both paths are aggregated and share the
same path to the server. The bottleneck is configured at the
routers (called eNodeB) on the paths to which the client is
connected. Here, both paths are equally configured in the
same Quality of Service (QoS) level with a bandwidth of
30 Mbit/s and a RTT of 100 ms. The queues can hold up
to 3000 packets. This resembles the deep queues in cellular
networks as measured in [14]. The effect of deep queues is
also visible in Fig. 1. It is indicated by the massive increase
of RTT in the range of multiple hundreds of milliseconds. For
simplification a constant bandwidth and propagation delay is
assumed here, to emphasize on the root causes, as we indicate
in the following.

The network topology is built with Vagrant for automated
testing using Kernel-based Virtual Machine. The virtual ma-
chines are based on Debian 9 and use the Linux Kernel 4.17
with MPTCP patches. The default minRTT scheduler is used,
the path manager is set to full mesh, and all interfaces are
configured as active. We note that in this basic network sce-
nario the round-robin scheduler would be a preferred choice.
Nevertheless, in this paper we stress on the relation of the
minRTT scheduler, loss-based congestion control, and deep
queues. Therefore, we limit our experiments to the default
MPTCP scheduler based on minRTT, which is preferred in
heterogeneous networks as evaluated in [10]. Traffic genera-
tion is performed with the software Iperf3 [18]. If not stated
otherwise, TCP Reno is used, as congestion control, since
the relation between throughput, queue sizes, RTT, buffer
dimensioning is well-known.

C. Impact of Write and Read Memory

We first show the impact of read and write memory size
available to a MPTCP socket and highlight the cases for low
performance. We determine experimentally for a single path
connection, that a send buffer of 1 MByte and a receive buffer



1 2 4 8 16 32 64
send buffer size [MByte]

0

10

20

30

40

50

60
th

ro
ug

hp
ut

 [M
B

it/
s]

recv buffer size
1
3
6
12
24

Fig. 4. Iperf3 throughput for MPCTP in dependence of send and receive
buffer size. Two effects are visible: First, only for very large send and recive
buffer sizes both flows are utilized, second, for send buffer sizes of 4 MByte
and 8 MByte a smaller receiver window improves the throughput. The dashed
lines indicate the maximal application layer throughput.

of 768 kByte are sufficient to fully utilize the path. These
values are above the theoretical bandwidth delay product
(BDP) of 100 ms · 30e6/8 byte/s ≈ 366 kByte, since the
buffers account for the full memory utilization, which com-
prises data structures to manage packets and further packets
waiting to be acknowledged as well as packets ready to be sent.
The analysis of the difference between snd_nxt-snd_una
shows a maximum of 384 kByte, which is close to the
theoretical BDP. Since both paths have equal characteristics,
a simple assumption is that doubling the buffer size leads
to full utilization of both paths when MPTCP is used. But,
Fig. 4 shows a different picture. For a utilization close to
the theoretical maximum a send buffer of 32 MByte and a
receive buffer of 12 MByte is required. The experiments were
executed multiple times, the variance of results is typically
small in the range of ±5%.

A recommendation for buffer size dimensioning for MPTCP
is also given in [16] to set the send and receive buffer to
2
∑n

i=1BWiRTTmax, where n is the number of paths, BWi

the bandwidth of path i and RTTmax the maximal RTT of
all paths, i.e. in this use case the recommendation leads to
1.5 MByte. This value relates to the packet sizes without any
overhead by the operating system. Still, the buffer size that
achieves a full utilization is about ten times larger, which is
not only due to overhead in the operating system.

Furthermore, the figure shows that only the throughput of
one path is achieved up to a send buffer of 8 MByte. Three
exceptions exists, namely, when the receiver window is small
at send buffer size of 4 MByte and 8 MByte. Typically,
larger buffers improve performance, here, the opposite effect
occurs. We evaluate it in Sec. II-E. In particular both paths
are fully utilized when the send and receive buffers are many
times larger than required for full utilization of a single path
connection.

We elaborate on these issues in the next section: Firstly, we
explain why a send window needs to be multiple times greater
than for single path TCP flows; secondly, we illustrate why in
few cases a smaller receive window improves the performance.

D. Large send window

We analyze the requirements on the send window by reading
status information from the MPTCP stack. To identify the
requirements for a large send window, we show information
on the CWND, the smoothed RTT (sRTT), and further check
if the socket is CWND limited2 or writable. CWND limited
indicates that equal or more packets are in flight than allowed
by the CWND, i.e. the link is fully utilized as estimated by
the congestion control algorithm.

Fig. 5 shows the progress of these values for an exemplary
MPTCP connection. We use TCP Reno as congestion control,
send and receive buffer are set to default values of 4 MByte
and 6 MByte, respectively. The default write buffer of Iperf3
is reduced from 128 kBytes to 1 kBytes. This reduction is for
clarity, since a large write of 128 kBytes, which corresponds to
about 92 packets, can only forward data to the network stack if
sufficient space is available. The availability of sufficient space
for large write buffers add an addition temporal behavior that
increases the complexity of the figure.

In the beginning, the CWND increases according to slow
start, also the sRTT increases from the minimal RTT of 100 ms
to multiples of it. As indicated by packets in flight the subflows
are used alternatingly, after a while, only subflow 2 is used,
due to the smaller sRTT evaluated by the minRTT scheduler.
The size of the sequence number space remains constant and
the parameter writeable of subflow 2 often becomes false.
This indicates that the socket buffer is limiting the maximum
number of packets in flight.

As next, this state stabilizes. The sRTT of subflow 1 is not
updated anymore, since it is not scheduled due to the outdated
and higher sRTT, and subflow 2 cannot increase the sending
rate further due to a limited send buffer. This creates a linkage
between the queue size in network elements and send buffer
size. Only if the send buffer is larger than the packets queued
in the network, the second subflow is utilized as indicated by
Fig. 4.

E. Small receive window

The results in Fig. 4 present contradictory values when
the receive buffer size is decreased for a send buffer size of
4 MByte, 8 MByte, and 16 MByte, namely the throughput
increases if the receive buffer size is decreased.

The difference in this case is that the receive buffer limits
the throughput. Fig. 6 displays the value of the MPTCP socket
that often decreased to small values, i.e. packets of larger size
cannot be transferred. In our scenario, the data is forwarded
from the application in chunks of 1 kByte.

In case of an exhausted receive window, the minRTT
scheduler implements a receive buffer optimization that halves

2The implementation is in https://github.com/multipath-tcp/mptcp/blob/
73bef74568c5238f68a693525401bfd6343e42ee/include/net/tcp.h#L1356



0

500

1000

C
W

N
D

 [p
kt

s]
subflow 1 subflow 2

100

150

200

250

sR
TT

 [m
s]

False

True

C
W

N
D

 li
m

ite
d

False

True

w
ri

te
ab

le

0

1000

2000

3000

4000

bu
ff

er
 s

pa
ce

 [k
B

yt
es

]

snd_buf
sk_mem_queued
write_seq-snd_una

0 1 2 3 4 5
time [s]

0

200

400

600

in
fli

gh
t [

pk
ts

]

0 1 2 3 4 5
time [s]

Fig. 5. TCP information of both subflows (top to down): CWND, sRTT,
CWND limited, application socket is writeable, packets in flight. In the
beginning both flows are utilized. CWND, sRTT, and packets in flight increase,
sRTT increases significantly by self-induced congestion. At about 3 seconds,
only subflow 2 is used to smaller RTT estimate, subfow 1 is not scheduled
again and does not receive any RTT update. RTT of subfow 2 does not increase
further since the send buffer space is utilized fully.

the window of non-selected subflows with greater RTT than
the selected subflow. Due to the alternating reduction of the
CWND, subflows become limited by the CWND. Thereby
other subflows are selected, thus, the RTT is updated. This
leads to an alternating usage of the flows, as shown by the
CWND and sRTT values in Fig. 7.

III. DISCUSSION OF MITIGATION

As described in the previous sections, multiple effects
accumulate for poor performance and unnecessary buffer
utilization: First, outdated RTT information, second, buffer
requirements of loss-based congestion control, which further
leads to significant increase of RTT by self-induced conges-
tion.

We mitigate these effects by implementing a probing
scheme, incorporating subflow availability based on the sub-
flow send queue utilization, and by reduction of send buffer
requirements using BBR as congestion control algorithm.

A. Tail Burst Probing

To address the outdated RTT information, we implement
a probing mechanism that sends a TCP probe if the last

0 1 2 3 4 5
time [s]

10 2

10 1

100

101

102

103

re
cv

 w
nd

 [k
B

yt
es

]

Fig. 6. Size of the receive window. Since the value decreases often to less
than 1 kByte, the windows limits the throughput.

0

500

1000

1500

C
W

N
D

 [p
kt

s]

subflow 1 subflow 2

0 1 2 3 4 5
time [s]

100

200

300

400

sR
TT

 [m
s]

0 1 2 3 4 5
time [s]

Fig. 7. CWND and sRTT for send buffer size of 8 MByte and receive
buffer size of 3 MByte. With a limited receive window the subflows are
used alternatingly

acknowledgement is older than the minimal RTT. To estimate
the minimal RTT, we use the builtin estimator of the TCP
stack. Furthermore, a probe packet is only sent once in the
interval of the minimal RTT to avoid excessive probing.

Fig. 8 shows the benefit of such a probing. For the default
setting of 4 MByte send buffer and 6 MByte receive buffer, the
throughput increases above the capacity of a single link. Still,
it is significantly below the maximal theoretical value. The
limited performance is due to an alternating utilization of each
subflows and thereby alternating consumption of the complete
send buffer: A first subflow is utilized, the RTT increases
and the send buffer space is consumed completely, a second
subflow was utilized before and has a larger and outdated
RTT estimation until it is probed. The duration between a
last packet is sent and the RTT update from probing is here
about 450 ms, which results from the RTT update from the last
packet of the burst, about 250 ms, 100 ms of probing interval
waiting time, and 100 ms of the minimal RTT propagation
time.

This solution avoids starvation of subflows and increases
performance, still bufferbloat and thereby significant increase
of RTT persists as shown in Fig. 9. Also full utilization of
both subflows is not achieved.



1 2 4 8 16 32 64
send buffer size [MByte]

0

10

20

30

40

50

60
th

ro
ug

hp
ut

 [M
B

it/
s]

recv buffer size
1
3
6
12
24

Fig. 8. Throughput for tail burst probing: The throughput for smaller buffer
sizes increase if the RTT is updated by probing.

100

150

200

250

sR
TT

 [m
s]

0 1 2 3 4 5
time [s]

0

200

400

600

in
fli

gh
t [

pk
ts

]

0 1 2 3 4 5
time [s]

Fig. 9. Time series of sRTT and packets in flight when tail burst probing
is used: Both subflows are used alternatingly, still the RTT increases signifi-
cantly.

B. Tackling Bufferbloat

As previously described, a second reason for the poor
performance is bufferbloat, which finally leads to starvation
of one path. The problem is tackled in [19]. The authors
consider a different scenario in which paths are heterogeneous
in bandwidth and latency while the receive window limits
the throughput. Since the origin of throttled performance is
bufferbloat, we evaluate a similar solution in which the CWND
is limited, when the smoothed RTT exceeds the minimal RTT
of the path significantly. Divergent from the proposal in [19]
and for ease of implementation, we use the minimal RTT
estimation already present in the kernel implementation and
reset the CWND to the calculated limit. According to the
equation from [19] the CWND is set to:

CWND =

{
λRTTmin

sRTT CWND, if sRTT
RTTmin

≥ λ
CWND, otherwise

(1)

with λ ∈ { 32 , 3}.

1 2 4 8 16 32 64
send buffer size [MByte]

0

10

20

30

40

50

60

th
ro

ug
hp

ut
 [M

B
it/

s]

recv buffer size
1
3
6
12
24

Fig. 10. Throughput when CWND is limited if bufferbloat is detected: The
throughput improves if λ = 3/2 is used.

1 2 4 8 16 32 64
send buffer size [MByte]

0

10

20

30

40

50

60

th
ro

ug
hp

ut
 [M

B
it/

s]

recv buffer size
1
3
6
12
24

Fig. 11. Throughput when CWND is limited if bufferbloat is detected: The
throughput does not improve if λ = 3 is used.

The results with parameters λ ∈ { 32 , 3} are shown in the
Fig. 10 and Fig. 11, respectively. For the λ = 3 no difference
to the previous results in Fig. 4 are visible. Since the sRTT
estimate in this scenario does not exceed 300 ms, limitation
of the CWND does not apply. Reducing the parameter to
λ = 3

2 improves the performance as demonstrated in Fig. 10.
Since often the relation sRTT

RTTmin
exceeds 3

2 . Still, this is not
sufficient for a full utilization of both links. These results and
the results in [11] demonstrate benefits of tackling bufferbloat,
nevertheless, the results also highlight the challenge of param-
eter optimization. Furthermore, the limitation of the CWND
is here implemented in the scope of the MPTCP scheduler,
i.e., it is done outside of the congestion control algorithm
implementation. Next, we address this last issue, by letting
the congestion control algorithm tackling bufferbloat.

C. Bottleneck Bandwidth and Round-trip Time (BBR)

The previous section indicates that the reduction of
bufferbloat increases the overall throughput performance. In



1 2 4 8 16 32 64
send buffer size [MByte]

0

10

20

30

40

50

60
th

ro
ug

hp
ut

 [M
B

it/
s]

recv buffer size
1
3
6
12
24

Fig. 12. Throughput for send and receive buffer configuration and congestion
control algorithm BBR: Already for the default configuration of 4 MByte send
buffer and 6 MByte receive buffer, the throughput increases above the single
path throughput and increases further with larger buffers.

50

100

150

sr
rt

 [m
s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time [s]

0

50

100

150

200

th
ro

ug
hp

ut
 [M

B
it/

s]

P1
P2
P3
sum

Fig. 13. The use of BBR as congestion control protocol for MPTCP leads
to a reduction of sRTT and throughput increase. No drops in throughput
and excessive delay increases occur compared to the introductory real-world
experiment using Reno instead of BBR.

the previous section, the bufferbloat reduction is performed by
limitation of the CWND during scheduling. The optimization
goal of utilizing a link without the creation of extensive
queueing is implemented by the congestion control algorithm
BBR [20]. Therefore, this congestion control algorithm ad-
dresses bufferbloat, too.

The results in Fig. 12 show the throughput using BBR as
congestion control algorithm, which improves the throughput
compared to TCP Reno. Since BBR reduces bufferbloat and
is not sensitive to parameter optimization, as the two previous
approaches, it is promising for combination with minRTT
scheduling. We deploy TCP BBR in our real-world exper-
imental setup presented in Sec. I. The sRTT and throughput
results are presented in Fig. 13. The sRTT still increases but
much less than in the introductory results shown in Fig. 1 and
moreover the throughput is much more balanced, too.

Ren
o

Cub
ic

BBR

Ta
ck

ing
 3/

2

Ta
ck

lin
g 3

Pr
ob

ing

Pr
ob

ing
 &

 Ta
ck

lin
g

Pr
ob

ing
 &

 Ta
ck

lin
g &

 B
BR

0

10

20

30

40

50

th
ro

ug
hp

ut
 [M

bi
t/

s]

send buffer/recv buffer
4MByte/6MByte
8MByte/12MByte

Fig. 14. Direct comparison of throughput for congestion control algorithms
and mitigation techniques. All mitigation techniques we present improve the
throughput. As discussed before BBR is promising due to reduction of RTT
and no need for parametrization.

Even though the results are promising, the BBR algorithm is
not a panacea due to issues on fairness as reported in [21], [22].
Still the results demonstrate that minRTT scheduling requires
a congestion control algorithm that avoids bufferbloat on the
paths, since bufferbloat distorts the scheduling metric.

Finally, we show a comparison for the default buffer sizes of
send and receive buffer in Fig. 14. Additionally to the previous
results, throughput measurements for the congestion control
Cubic [23] and combinations of the presented mitigation
techniques are included. Fig. 14 indicates most increase of
throughput for using the tackling approach with parameter 3

2
and the BBR approach. Both approaches avoid bufferbloat by
adaptation of the CWND. Also the tackling approach with
parameter λ = 3 shows an improvement for larger buffer
sizes. Due to large buffer sizes the RTT increases and the sRTT
increases above 3·minRTT, so the CWND is adjusted also with
parameter λ = 3, too. The combination of the approches does
not show an further improvement. Still, we think BBR is most
promising since it avoids the conflict of minRTT scheduling
and loss-based congestion control algorithms, that typically
increase the RTT by their greedy behavior and avoid complex
parameter optimization.

IV. RELATED WORK

In this paper, we address the problem of buffer dimensioning
for multi-path protocols. Especially, the problem is mostly
addressed in the scope of the receiver buffer and the scheduler
of MPTCP. We shed light on a limitation according to send
buffer limitation, still mitigation techniques for reduction of
bufferbloat improve the performance independent from the
send or receive buffer.

In [10], different scheduling disciplines where compared
that finally lead to the current default scheduler of MPTCP,



namely the minRTT scheduler, which prefers the path with the
smallest RTT as long as the path is not overloaded. Overload
detection is done by congestion control protocols taken from
single path TCP or newly designed protocols as LIA [6],
OLIA [7], BALIA [8], and wVegas [9] that address the
problem for shared bottlenecks. We did not test such protocols
since for our experiments the bottlenecks are disjoint.

An active probing approach to avoid outdated RTT informa-
tion is also presented in [24]. The authors in [24] address by
their approach thin streams, whereas we show that outdated
RTT information also occurs for greedy traffic flows. For thin
streams they recommend much higher probing interval. In both
cases active probing increases the performance.

HoL blocking issues are addressed in [11], [12], [13].
In [12], a schedule for packet transmission times is generated,
whereas in [13] the scheduler calculates the arrival time
for the packets ready to be sent to achieve in-order arrival.
Both approaches are compared in [11] and additionally the
authors [11] introduce a new scheduling algorithm that avoids
the utilization of flows with the larger RTT if the data would
cause HoL at the receiver. All algorithms optimize on the
problem of HoL blocking at the receiver side. Still, the issue
of large RTT due bufferbloat in network queues remains and
is not addressed directly by these approaches. Nevertheless,
addressing HoL blocking also reduces the memory allocation
at the sender, which mitigates the effects we observe. A
scheduler designed for reduction of delay is presented in [25].
The authors further point out that in heterogeneous network
paths the redundant scheduler often sends outdated packets on
the path with small bandwidth and low latency. This behavior
impedes advantages by redundant scheduling since effectively
only packets of one path are usable.

V. CONCLUSION

Scheduling in multi-path protocols is challenging, it has to
account for heterogeneous network paths and resulting effects
as e.g. HoL blocking. In this paper, we contribute insights to
the issue of bottlenecks with deep queues in combination with
multi-path protocols. Such path characteristics are prevalent
for cellular networks. We show the interaction of the default
scheduler of MPTCP, which uses the minimal RTT as de-
cision criteria, and loss-based congestion control protocols.
This causes extensive bufferbloat at network elements and so
distorts the RTT measurements of network paths significantly.
This distortion leads to poor performance of MPTCP in such
scenarios due to outdated RTT measurements and starvation of
subflows. We present mitigation techniques by implementing
a probing scheme and avoidance of extensive queueing on
the network path. Reducing bufferbloat by selection of a non
loss-based congestion control algorithm improves performance
in laboratory as well as real-world experiments. The experi-
ments reveal the shortcomings of loss-based congestion control
protocols, since loss in current cellular network is small, and
reveal the need for sophisticated congestion control protocols
for multi-path protocols.

REFERENCES

[1] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz,
“Multipath QUIC: A Deployable Multipath Transport Protocol,” in IEEE
ICC, May 2018.

[2] Q. D. Coninck and O. Bonaventure, “Multipath QUIC: Design and
Evaluation,” in Proc. of ACM Conext, Dec. 2017.

[3] R. R. Stewart, “Stream Control Transmission Protocol,” RFC 4960, Sep.
2007.

[4] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent Multipath Trans-
fer Using SCTP Multihoming Over Independent End-to-End Paths,”
IEEE/ACM Trans. Netw., vol. 14, no. 5, pp. 951–964, Oct. 2006.

[5] C. Paasch and O. Bonaventure, “Multipath TCP,” ACM Queue, vol. 12,
no. 2, pp. 40:40–40:51, Feb. 2014.

[6] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP,” in Proc. of USENIX NSDI, ser. Proc. of NSDI, Mar. 2011, pp.
99–112.

[7] R. Khalili, N. Gast, M. Popovic, and J. Le Boudec, “MPTCP Is
Not Pareto-Optimal: Performance Issues and a Possible Solution,”
IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1651–1665, Oct. 2013.

[8] Q. Peng, A. Walid, J. Hwang, and S. H. Low, “Multipath TCP: Analysis,
Design, and Implementation,” IEEE/ACM Trans. Netw., vol. 24, no. 1,
pp. 596–609, Feb. 2016.

[9] Y. Cao, M. Xu, and X. Fu, “Delay-based congestion control for multipath
TCP,” in Proc. of ICNP, Oct. 2012.

[10] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental Eval-
uation of Multipath TCP Schedulers,” in Proc. of the ACM SIGCOMM
Workshop on CSWS. ACM, 2014, pp. 27–32.

[11] S. Ferlin, O. Alay, O. Mehani, and R. Boreli, “Blest: Blocking
estimation-based mptcp scheduler for heterogeneous networks,” in Proc.
of IFIP Networking, May 2016, pp. 431–439.

[12] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“DAPS: Intelligent Delay-aware Packet Scheduling for Multipath Trans-
port,” in Proc. of IEEE ICC, Jun. 2014, pp. 1222–1227.

[13] F. Yang, Q. Wang, and P. D. Amer, “Out-of-Order Transmission for In-
Order Arrival Scheduling for Multipath TCP,” in Proc. of Conference
on Advanced Information Networking and Applications Workshops, May
2014, pp. 749–752.

[14] N. Becker, A. Rizk, and M. Fidler, “A Measurement Study on the
Application-level Performance of LTE,” in Proc. of IFIP Networking,
Jun. 2014.

[15] X. de Foy, M. Perras, U. Chunduri, K. Nguyen, M. G. Kibria, K. Ishizu,
and F. Kojima, “Considerations for MPTCP Operation in 5G,” Internet-
Draft, Jun. 2011.

[16] J. Iyengar, C. Raiciu, S. Barre, M. J. Handley, and A. Ford,
“Architectural Guidelines for Multipath TCP Development,” RFC 6182,
Mar. 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6182.txt

[17] A. Agache and C. Raiciu, “Oh Flow, Are Thou Happy? TCP Sendbuffer
Advertising for Make Benefit of Clouds and Tenants,” in Proc. USENIX
Workshop HotCloud, Jun. 2015.

[18] “Iperf3,” https://iperf.fr/iperf-download.php.
[19] S. Ferlin-Oliveira, T. Dreibholz, and O. Alay, “Tackling the Challenge

of Bufferbloat in Multi-Path Transport over Heterogeneous Wireless
Networks,” in Proc of. IEEE IWQoS, May 2014, pp. 123–128.

[20] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue, vol. 14,
September-October, pp. 20 – 53, 2016.

[21] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a Deeper Understanding of TCP BBR Congestion
Control,” in Proc. of IFIP Networking, May 2018.

[22] M. Hock, R. Bless, and M. Zitterbart, “Experimental Evaluation of BBR
Congestion Control,” in Proc. of IEEE ICNP, Oct. 2017.

[23] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-friendly High-speed
TCP Variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
Jul. 2008.

[24] A. Froemmgen, J. Heuschkel, and B. Koldehofe, “Multipath TCP
Scheduling for Thin Streams: Active Probing and One-Way Delay-
Awareness,” in In Proc. of IEEE ICC, May 2018.

[25] B. Walker, V. A. Vu, and M. Fidler, “Multi-Headed MPTCP Sched-
ulers to Control Latency in Long-Fat / Short-Skinny Heterogeneous
Networks,” in Proc. of ACM CHANTS, 2018, pp. 47–54.


