

# An Odd Couple: Loss-Based Congestion Control and Minimum RTT Scheduling in MPTCP

**Ralf Lübben** University of Applied Science Flensburg

Johannes Morgenroth

Robert Bosch GmbH, Corporate Research, Hildesheim

October 16, 2019

### Singlepath vs. Multipath TCP Throughput - Drive Test



- real-world drive test in cellular networks
- about 30 MBit/s throughput for each provider
- 51 MBit/s aggregated throughput
- MPTCP cannot exploit paths fully

### **Exemplary Trace**



- RTT increase dramatically
- throughput drops to zero for the same time
- occurs in turns between providers
- indicates systematic issue with congestion control and scheduling

# **Exemplary Trace**



- RTT increase dramatically
- throughput drops to zero for the same time
- occurs in turns between providers
- indicates systematic issue with congestion control and scheduling

Details in Application Level Performance Measurements of Multi-Connectivity Options in Cellular Networks for Vehicular Scenarios presented yesterday as short-paper, poster.



- simplified multi-path scenario
- deep queues (3000 pkts) at nodes close to the client
- reproduce mobile network



- simplified multi-path scenario
- deep queues (3000 pkts) at nodes close to the client
- reproduce mobile network
- congestion control: NewReno



- simplified multi-path scenario
- deep queues (3000 pkts) at nodes close to the client
- reproduce mobile network
- congestion control: NewReno
- scheduling: MinRTT

• Iperf3 throughput measurements

- Iperf3 throughput measurements
- single path BDP is 366 kByte

- lperf3 throughput measurements
- single path BDP is 366 kByte
- send buffer / receiver buffer setting of 1 MByte / 768 kByte achieves full utilization

- Iperf3 throughput measurements
- single path BDP is 366 kByte
- send buffer / receiver buffer setting of 1 MByte / 768 kByte achieves full utilization
- the difference in BDP and buffer space is due to overhead in memory consumption and sequence number space



- Iperf3 throughput measurements
- single path BDP is 366 kByte
- send buffer / receiver buffer setting of 1 MByte / 768 kByte achieves full utilization
- the difference in BDP and buffer space is due to overhead in memory consumption and sequence number space
- MPTCP requires much larger buffer sizes for full utilization



- 1. both subflows ramp up (slow start)
- 2. subflows are used alternately
- 3. one subflow starves

# Send Buffer Limitation



- memory space increases to 4 MByte
- subflow 1: used memory and sequence number space drops to zero
- subflow 2: fully utilizes the memory and sequence number space

6 / 12



- RTT of subflow 1 is slightly higher
- minRTT scheduling: subflow 1 is not scheduled and RTT is never updated
- subflow 2 cannot increase traffic rate due to buffer limitations
- RTT of subflow 2 never exceeds RTT of subflow 1

©R. Lübben, J. Morgenroth

### **Recv Buffer Limitation**



MPTCP implements a receive buffer optimization:

- if the recv window limits the transmission, the flow is not selected anymore
- the CWND of the non-selected sub-flow is halved
- decreasing the CWND of the non-selected subflow is safe
- paths are used in turns due to CWND halving

MPTCP implements a receive buffer optimization:

- if the recv window limits the transmission, the flow is not selected anymore
- the CWND of the non-selected sub-flow is halved
- decreasing the CWND of the non-selected subflow is safe
- paths are used in turns due to CWND halving

### MPTCP send buffer optimization:

- not as straight forward as receive buffer optimization
- here, the active flow is the problem, not the inactive flow

1. Tackling bufferbloat<sup>1</sup>:

$$\mathcal{CWND} = egin{cases} \lambda rac{\mathcal{R}TT_{min}}{\mathcal{s}\mathcal{R}TT} \mathcal{C}\mathcal{WND}, & ext{if } rac{\mathcal{s}\mathcal{R}TT}{\mathcal{R}TT_{min}} \geq \lambda \\ \mathcal{C}\mathcal{WND}, & ext{otherwise} \end{cases}$$

with  $\lambda \in \{\frac{3}{2}, 3\}$ 

- 2. Tail burst probing: send TCP probe, when no RTT update in minimal RTT
- 3. Avoid large buffers: use BBR as congestion control

<sup>1</sup>Tackling the challenge of bufferbloat in Multi-Path Transport over heterogeneous wireless networks, Simone Ferlin-Oliveira, Thomas Dreibholz, Özgü Alay

9 / 12

### Results



Tackling bufferbloat:

- small buffers: improves for  $\lambda = \frac{3}{2}$  but not for  $\lambda = 3$
- large buffers: improves for  $\lambda = \frac{3}{2}$ also for  $\lambda = 3$
- setting  $\lambda$  is challenging

### Results



#### Probing:

- improves the overall throughput
- improvement is limited
- subflows block for short duration before a probe gives a new estimate

### Results



#### BBR:

- increases throughput similar to the tackling approach
- avoids filling buffers and network queues by bandwidth estimation
- avoids missleading scheduling decisions
- no direct parameter setting is required
- BBR has other known issues: fairness

### Comparision Traffic Trace (Real-World Cellular Network)



©R. Lübben, J. Morgenroth

- MinRTT scheduling and loss-based congestion control interfere with each other.
- Large network queues enforce the negative interference.
- Large send/receive buffers significantly above path BDP are required.
- Tail burst probe, tackling, advanced congestion control mitigate the problem.
- Each approach concerns a different issue.