
Work in Progress:
Fast Reinjection for Intermittent Multi-Path

Connections
Ralf Lübben

Flensburg University of Applied Sciences
Flensburg, Germany

Email: ralf.luebben@hs-flensburg.de

Abstract—A common use case for multi-path protocols such
as mutli-path TCP is the simultaneous use of Wifi and cellular
connections since smartphones nowadays provide such interfaces.

The combination of multiple networks for Internet access,
e.g. a local area network and wide area network, allows for
continuous data transmission even in scenarios with an intermit-
tent connection. One example is the loss of the Wifi connection
in a mobile scenario in which a user leaves the connection
range of the Wifi network. For a seamless handover between the
connections, protocols have to detect the connection loss and have
to retransmit lost packets of the lossed connection immediately,
so that the receiving network stack can forward the packets in
sequence to the application.

Here, the behavior for detection of connection loss and the
reinjection of lost packets after connection loss is carved out for
multi-path TCP. The analysis of the protocol behavior shows that
mechanisms that originate from single-path TCP and adopted to
multi-path are slow to detect connection loss and cause therefore
large application level delays. Furthermore, a new reinjection
timer is proposed to speed up the reinjection of lost packets after
a connection loss. The new approach is evaluated using different
timer values and show that adaptation of the timer speed the
recovery of lost packets after a connection loss.

I. MPTCP CONNECTION LOSS DETECTION

For the following description a mobile device connected to
a server using MPTCP with two subflows, one using Wifi and
one using a cellular connection, is assumed. Both subflows
are established, but only the Wifi connection is used due
to application limited traffic, e.g. a video stream. MPTCP
scheduling is based on the minimal RTT of the connection,
and the path manager is full-mesh. Nevertheless the following
description is universally applicable to scenarios in which
multi-path protocols loose connections and have to retransmit
packets in flight to achieve a reliable and in-order transmission
of data.

The detection of the loss of a connection can be identified
directly by data layer events or indirectly by probing and
timeouts, i.e. lack of acknowledgements. For example, if the
connection loss is due to leaving the communication range
of a wireless network, an end-host directly learns about the
loss from data layer events. Afterwards, a connection manager
typically removes the configuration of related interfaces if the
loss is indicated. In MPTCP, this triggers the removal of the
related subflows. In a scenario in which the Wifi connection is

usually at the client site and traffic flows mainly in downstream
direction from a server to the client, the server learns about
the loss of the connection by the client. In MPTCP, the client
signals the loss by the MPTCP option REMOVE ADDR to
the server on remaining subflows, afterwards the server should
trigger a TCP keepalive for security purposes, see RFC6824.
If the keepalive messages is not answered, the subflow is
assumed to be broken. The detection of the Wifi signal loss
and transmission of the signal requires often multiple times
of the RTT of the subflow connection. For example, a Wifi
networking stack assumes a signal loss if multiple beacon
frames, typically send periodically each 100 ms, fail to appear1

and if a subsequent active probing attempt fails. Afterwards,
the signal loss event triggers the removal of the network
configuration, which is in turn signaled to the MPTCP stack
triggering the transmission of the REMOVE ADDR option
to the server. This sequence of events already show the slow
reaction on data layer events, whereas the removal takes sev-
eral hundreds milliseconds. Compared to the RTT of today’s
Internet connections, established via cellular and local area
networks with RTTs often below 200 ms, see [1], [2], the time
interval to detect the connection loss is large. The loss of a data
layer connection can be directly detected if it occurs at an end
host. Loss of a connection on intermediate network segments
cannot be detected directly since no information from the data
link layers is available at the end hosts. Therefore, reinjection
of lost packets on broken connection needs an additional
mechanisms to recover. Independent from the removal of a
subflow, MPTCP reinjects packets after the retransmission
timeout (RTO) of a subflow expires. Packets sent on that
subflow but not acknowledged are reinjected on remaining
subflows.

Therefore, the reinjection of packets after RTO is indepen-
dent of any data layer event and does not lead to the removal of
the subflow. Obviously, the order of the events, RTO timer fires
and transmission of the MPTCP option REMOVE ADDR,
depend on the setup. In the assumed scenario, where the RTT
is typically small and below the minimal RTO, the RTO fires

1https://github.com/multipath-tcp/mptcp/blob/e1efcf0a63f9b62394458e48
f6d0ade15c8b8155/net/mac80211/mlme.c#L65



first and leads to the reinjection of packets. So the RTO timer
is the main event that effects the reinjection of packets. Next,
the sequence until the timer fires is described in more detail.

The retransmission timeout mechanism is transferred from
single-path TCP to MPTCP. The following analysis shows that
the usage of the RTO prevents a fast reinjection of lost packets
on remaining subflows. Furthermore, the extension tail-loss
probe (TLP) [3], introduced in single-path TCP to improve
the retransmission behavior [4], slows down the reinjection of
packets in MPTCP.

The timers RTO and PTO for TLP are calculated as follows:
TCP introduces a minimum value for the RTO timer. The RFC
6298 [5] states a minimum of one second. In general, the RTO
is calculated by

RTO = max(RTOmin, SRTT + max(G,K ·RTTV AR)),
(1)

with smoothed RTT SRTT , the clock granularity G, the
minimal RTO RTOmin, the variance of RTT RTTV AR and
a multiplication factor of K = 4. Linux use a alternative
implementation2 so that the RTO is about

RTO = SRTT + max(RTOmin,K ·RTTV AR), (2)

whereas RTOmin = 200 ms.
On each incoming ACK, the timer is reset to the current

RTO estimate.
The last ACK that arrives on subflow 1 restarts the RTO

timer to the current RTO estimate. Note that, the first packet
lost, is sent ∆ seconds before. If the packet inter arrival time ϕ
is small, ∆ ≈ RTT under the assumption of a small variance.
That is, the reinjection of the lost packets takes about

REJRTO = ∆ +RTO ≈ RTT +RTO

= RTT + max(RTOmin, SRTT + max(G,K ·RTTV AR)).
(3)

Until packets are transferred in sequence to the receiver, it
takes REJRTO plus the one way delay from the sender to the
receiver to successfully transmit packets in sequence. For the
assumed scenario, this implies a long pause in transmitting
data, even though further subflows may be available. If the
RTT and its variance is small, the RTO is governed by
RTOmin.

The feature tail-loss probe3 even let the time until packets
are reinjected increase as depicted in Fig. 1. TLP avoids
the retransmission timeout in single-path TCP if packets at
the end of a burst are lost, i.e. no further packets are in-
flight that could trigger duplicate acknowledgements and so
a fast retransmit. TLP is implemented by an additional timer.
It retransmits the last packet sent after a probe timeout
of PTO = min(RTO, 2RTT + δ) to trigger acknowl-
edgements. The parameter δ depends on operating systems

2https://github.com/multipath-tcp/mptcp/blob/c7fa07ab914c20dbde486d7c
80fa72ff78d2d4d2/net/ipv4/tcp input.c#L721

3TLP is enabled by default on recent Linux distributions, implementation
see https://github.com/multipath-tcp/mptcp/blob/c7fa07ab914c20dbde486d7c
80fa72ff78d2d4d2/net/ipv4/tcp output.c#L2464

X

RTO

Δ

φ

X

Loss of 
connection

seq: 1001 

seq: 1000 

seq: 1002
seq: 1003
seq: 1004

seq: 1003seq: 1004

PTO

X
X
X
X

seq: 1005
seq: 1006
seq: 1007
seq: 1008

θ

seq: 1005seq: 1006seq: 1007seq: 1008

seq: 1009seq: 1010seq: 1011

seq: 1003

seq: 1004

sender subflow 1 subflow 2

Retransmit of 
RTX queue 

due to receiver 
buffer 

optimization

Subsequent 
packets sent 
until no space 

in snd/rcv 
window

Packets sent 
until no space 

in CWND

seq: 1005seq: 1006seq: 1007seq: 1008
seq: 1012

Gap at 
receiver 

closed, sent 
next packet in 

sequence

Fig. 1. Duration between connection loss and reinjection of packets on the
remaining path with tail loss probing and receive buffer optimization, delayed
acknowledgments algorithm is omitted for simplicity.

setting, δ = TCP MIN TIMEOUT = 2 jiffies or
δ = TCP RTO MIN = HZ/5 if only one packet is in
flight, typical values are HZ = 250 Hz, whereas a jiffie
becomes 1/HZ = 4 ms. After the PTO fires, the RTO follows
up. The PTO timer is activated if a first packet is sent on a
previously empty connection, it is restarted on incoming ACKs
and further packet transmissions. In the assumed scenario, the
TLP is sent on the lost connection path first, therefore without
any response. Afterwards, the RTO follows up, leading finally
to the reinjection. Thereby, the time until packets are reinjected
increases to

REJTLP = REJRTO+PTO+θ ≈ RTT+RTO+PTO+θ,
(4)

if RTO > 2RTT it is about 3RTT+RTO+θ. Note that the
PTO timer is also restarted on each packet sent on a particular
subflow. If the CWND and buffers are large, the sender may
transmit packets for a while, so the timer is restarted until
the sender keeps sending packets on the lost connection, this
interval is expressed by θ.

Additionally, receive buffer optimization implemented in the



MinRTT scheduler4 also causes a retransmission of packets
queued in the retransmission queue of the MPTCP meta
socket. The retransmission queue holds the same packets as
reinjected before. This retransmission occurs likely, since be-
fore reinjection, packets are sent until the congestion window
or buffer limit stops the transmission. The sequence is shown
in Fig. 1.

Using connections with RTTs of 30 ms to 50 ms and little
jitter, the time to reinject packets is multiple times larger than
the RTT . The relation between RTT and time to reinjection
may even increase with upcoming technologies that include
design goals for delay reduction such as 5G cellular networks
without adaptation of RTOmin, since the relation between
minimal timeout and RTTs worsen. Therefore reliable multi-
path protocols require a fast reinjection of packets.

To summarize the findings of this section:
• The minimal timeout RTOmin is large compared to path

RTTs in common internet access networks that causes
slow reinjection of packets after a connection loss.

• The apposition of the timers PTO from tail loss probe
and RTO increases the time until reinjection of packets.

• RTO and PTO are restarted on the last ACK arrived or
last packet sent, respectively, this may be much later the
first packet lost.

• Receive buffer optimization in the MinRTT scheduler
leads to retransmission of previously reinjected packets.

II. EXAMPLE

The extraction of packets from a packet trace in Tab. I
demonstrates the timing and sequences related to the events
described in Sec. I. The packets trace is recorded in experimen-
tal setup shown in Sec. IV-A. The values relate the exemplary
flow from Fig. 1 to realistic timing, sequence numbers, and
extent of packets sent after the loss of the connection.

In the present packet trace it takes 404 ms from the first
packet that is not acknowledged and has to be retransmittted
until the reinjection of this packet. The REMOVE ADDR
option arrives at 569 ms later. After the first packet not
acknowledged still 230 kByte are sent on subflow 1 and
485 kByte on subflow 2.

III. DETECTION AND REINJECT STRATEGY

In this section, a detection and reinjection strategy based on
a new reinjection timer is proposed. So this is a sender-side
only extension without interaction with remaining subflows.

For evaluation three alternative values are calculated for the
reinjection timer (REJ). The first timer is similar to the RTO
timer but the factor K is set to K = 1 and no RTTmin is
taken into account:

REJ = SRTT +RTTV AR. (5)

The second value uses as estimate the minimal RTT compared
to the previous timer:

REJ = RTTmin +RTTV AR. (6)

4https://github.com/multipath-tcp/mptcp/blob/c7fa07ab914c20dbde486d7c
80fa72ff78d2d4d2/net/ipv4/tcp output.c#L2464

The last value adjust the timeout based on the send time of the
first packet on the retransmission queue, for this adjustment
∆ see Eq. (3):

REJ = SRTT +RTTV AR − ∆ (7)

This last calculation is similar to the RTOR algorithm pro-
posed in [6] to take into account the elapsed time since the
earliest outstanding packet.

Equal to the RTO timer, the timer is set on the first packet
sent if no packet is in flight and is restarted on each incoming
acknowledgement. This also includes duplicate acknowledge-
ments since these indicate that the connection is still available.
The timer is canceled if no further packets are in flight.

The values are less conservative as the RTO timer value,
since the RTO in singe-path TCP assumes that a timeout
occurs in serious conditions, in which the load on the flow
should be reduced. In MPTCP, reinjected packets are sent on
the remaining subflows, so the timer can be less conservative
since it does not increase the load on the affected subflow.
Still, the selection of the timer should not cause unnecessary
reinjections.

For evaluation purposes and to avoid modifications on
single-path TCP behavior, a new timer is implemented. In
Linux, the minimal RTO values can be adjusted, TLP can
be deactivated, and the RTOR algorithm [6] could be imple-
mented to achieve a similar behavior without the requirement
for a new timer.

A. Reinjection and MPTCP RCV Buffer Optimization

The new implementation does not address the retransmis-
sion of segments reinjected before. The main reason for this
reinjection is that MPTCP does not remember the subflow
the reinjected segments are sent on. Typically, segments are
reinjected or retransmitted by recv buffer optimization if not
already sent on the subflow before, but it only remembers the
original subflow. A basic solution would be to let MPTCP
to store all subflows a segment (including retransmission and
reinjections) was sent on. Nevertheless, implementation must
taken into account to not lead to a stall, if no additional subflow
is available if a segment was already sent on all subflows.

B. Reinjection and Duplication Acknowledgements

The described approach resets the timer reinjection timer
also on duplication acknowledgements to avoid reinjection in
this case. Still, if duplicated ACKs arrive it is difficult to decide
if the retransmission on the remaining path or the reinjection
on further paths is beneficial. Therefore, different strategies
could be implemented: First, only reinject segments without
retransmission if a second subflow is available, second, do a
retransmission as well as a reinjection and duplicate segments.
In both cases also information from selective acknowledg-
ments can be used for a selective retransmission or reinjection,
respectively.

First experiments to also reinject packets during recovery
by duplicate acknowledgments show an increase of the send
buffer size that leads to a stall of one subflow due to size



Event sf Time TCP Seq TCP Ack DSN Cause
First packet not acked 1 75.825676 (0) 60699801 x 3616571178 Connection broke
Last ACK 1 75.856112 (+30) x 60701201 x
Last packet sent 1 75.918575 (+93) 60935001 x 3616803578 CWND limited
First packet 2 75.919129 (+94) 63477569 x 3616804978 1. sf becomes CWND limited, 2. sf is used
Retransmission (PTO) 1 75.993254 (+168) 60935001 x 3616804978 PTO fires on 1. sf, no effect due to broken link
Last packet before retrans 2 76.116669 (+198) 63974569 x 3617303378 Buffer limitation, sender and receiver cannot

clear their buffer (HoL at receiver,
RTX queue at sender), 2. sf stops sending packets

Retransmission (RTO) 1 76.229354 (+404) 60701201 x 3616571178 RTO timer on sf 1 triggers retransmission
Reinject (RTO) 2 76.229603 (+404) 63975969 x 3616571178 RTO timer on sf 1 triggers reinjection on sf 2
Reinject RTX queue 2 76.251669 (+426) 64211169 x 3616571178 Due to buffer constraints, receive buffer

optimization triggers, retransmission of RTX queue,
which holds the same packets as reinjected before

REMOVE ADDR option arrived 2 76.394444 (+569) x 64297969 3617338378 Server receives REMOVE ADDR option and closes sf,
no further effect on retransmission

TABLE I
EXTRACT FROM PACKET TRACE, RELATED TO THE SECOND CONNECTION LOSS IN FIG. 3A.

limitation of the send buffer5. This effect is left for further
evaluation, here, the evaluation focuses on connection losses.
Due to the lost connection, the related subflow cannot receive
any duplicated ACKs.

IV. SCENARIOS

To evaluate the approach the new timer is evaluated in
various scenarios to measure parameters as the application
level delay after a path loss and the number of reinjections
to identify if the reduction of the timer causes additional
reinjections. Therefore various experiments are performed:

• Done:
– Network:

∗ Basic: constant rate, loss of one connection
· Application: Greedy, Non-Greedy,Thin streams

(delayed ack behavior)
∗ Complex: packet loss and jitter during handover

• ToDo:
– Realistic: Emulation with varying throughput and

loss before connection loss
– Network: Real-world: WLAN/LTE

A. Experiment: On/Off Path

In this scenario, MPTCP establishes two links between the
client and server. The network setup including rate, delay, and
jitter settings is shown in Fig. 2. Using the default MPTCP
scheduler the subflow with the minimal RTT is preferred.
Here, this makes the subflow along Router1, which path fea-
tures the smaller RTT, the preferred one. For the experiment,
the configuration of the IP address of the network interface at
the client of the preferred flow is deleted and added (including
route settings) repeatedly. This mimics a basic scenario in
which a client leaves a Wifi network and stays connected to a

5In detail, packets are not retransmitted due to NOMEM in
tcp_fragment() in https://github.com/multipath-tcp/mptcp/blob/a2
89cca68246e5360287154b19f6d1aa8fa73a80/net/ipv4/tcp output.c#L1338,
nevertheless this behavior may improve in more recent kernel versions
https://github.com/multipath-tcp/mptcp/blob/c7fa07ab914c20dbde486d7c80fa
72ff78d2d4d2/net/ipv4/tcp output.c#L1327

Fig. 2. Experimental setup: Multi-path connection between client and server.
The connection which has the smaller RTT is turn off by removing the IP
configuration of the related interface on the client to emulate a connection
loss.

cellular network. This behavior corresponds to network man-
agers that delete network configuration if the communication
range of a Wifi network is left and adding the configuration
of IP address and routing setting if the communication range
is entered again. All devices (client, server, and routers) are
Linux, Debian 10, based virtual machines using Kernel-based
Virtual Machine for virtualization and Vagrant for deployment.
The routers use unmodified kernels, where client and server
use MPTCP kernel based on version 4.19 6 and extensions for
an additional reinjection timer as described in Sec. III. The
buffer size at the routers is 200 packets for each interface.
Constant bitrate traffic of 10 MBit/s with payload sizes of
1400 byte is generated by the Distributed Traffic Internet
Generator (DITG) [7], which also allows for the measurement
of throughput and one way delays. One way delays and
application throughput is measured by DITG; estimates of
the CWND, SRTT, packets in flight are extracted from the
Linux TCP stack by the use of TCP’s probing facility, network
throughput is measured by analysis of packet traces collected
with tcpdump, a reinjection of segments is extracted from
packet traces by mptcptrace [8]. To focus on effects from
connection loss and packet reinjection a simple constant bitrate
traffic profile and basic path characteristic with constant delay

6Commit a289cca68246e5360287154b19f6d1aa8fa73a80



and without packet loss and jitter are chosen.
1) RTT << RTOmin: The first scenario mimics the sce-

nario assumed in Sec. III where RTT is typically significantly
below 100 ms, i.e. below default minimal RTO value used
in Linux. To emphasize on the effects after the loss of one
connection, complex parameters as jitter and loss are omitted
in this network scenario. In Sec. IV-D, also results from
experiments that include jitter and loss are presented.

The results in Fig. 3 show that the introduction of a new
timer lowers the application level delay after the connection
loss. The default behavior shows a application delay of more
than 400 ms (connection loss occurs at 135 s, 185 s 235 s,
285 s, 335 s in all figures) in Fig. 3a, which is more than
ten times larger than the largest one way path delay in this
network scenario. For all alternative timer values proposed in
Sec. III, the application level delay decreases. In Fig. 3d, it
improves to about 125 ms.

2) RTT > 200 ms: In this second scenario the RTT of the
network is increased above the minimal RTT of 200 ms, the
path with the lower RTT has a RTT of 250 ms and the second
path of 300 ms. Also in this scenario the application level
delays increases to about 1 s when the path with the lower
RTT breaks using an unmodified MPTCP implementation,
integration of an additional timer for reinjection decreases the
delay, Fig. 4d shows an improvement to about 400 ms.

B. Experiment: On/Off Path - Greedy Traffic

This experiment is set to the same parameters as described
in Sec. IV-A1 expected for the application data rate, which is
set to 78 MBit/s. So it exceeds the aggregated throughput of
both path.

Buffering of packets at the routers, sender, and receiver
stacks lead to a application delay of about 1 s if only one
path is available and is halved if the second path becomes
active. Nevertheless, the application delay decreases after the
connection loss from about 1 s to 650 ms, 600 ms, 550 ms
for the three timer variants.

C. Experiment: On/Off Path - Thin Traffic

In this experiment the settings from Sec. IV-A are adapted:
A thin data stream with 2 packets per seconds is configured. So
the packet gap is 500 ms to evaluate if delay acknowledgments
trigger suspicious reinjections. The related traffic trace does
not show any suspicious reinjection besides reinjections after
a connection loss. The application delay after a connection
loss improves from 420 ms to about 110 ms.

D. Experiment: Jitter & Loss

To evaluate if jitter and loss cause suspicious reinjections
of packets, the experiment from Sec. IV-A1 is repeated with
a jitter of 5 ms or 8 ms, respectively, on the paths with the
small and large delays in each direction and loss of 0.01% on
each path in each direction.

For comparison the original implementation and the new
timer with settings defined in Eqs. (5),(6),(7) are evaluated.
For each experiment the total number of reinjected packets

(a) oiginal (b) REJ = sRTT + RTTV AR

(c) REJ = RTTmin + RTTV AR (d) REJ = sRTT +RTTV AR −∆

Fig. 3. Basic network RTT << RTOmin - Implementation of a new timer
reduces the application level delay, the delay decreases from about 400 ms to
less than 150 ms for timer setting presented in Eq. (7).

is related to the total number of application layer packets,
which is denoted as retransmission rate. The retransmission
rate is shown for each variant in Fig. 5. The experiment
for each variant is repeated 30 times and summarized as
boxplot. The results show a overall litte retransmission rate,



(a) unmodified (b) REJ = sRTT + RTTV AR

(c) REJ = RTTmin + RTTV AR (d) REJ = RTTmin + RTTV AR

Fig. 4. Simple network RTT > 200 ms - Implementation of a new timer
reduces the application level delay, the delay decreases from about 1000 ms
to about 500 ms for timer setting presented in Eq. (7).

which increases from 0.094% to 0.112% for the timer setting
given in Eq. (7). For the settings in Eqs. (5),(6), nearly no
changes are observable in the median reinjection rate. From
the results it follows that also in the appearance of jitter and
loss the introduced reinjection timer is robust and does not

original 1 2 3
variant

0.05

0.10

0.15

0.20

0.25

0.30

re
tr

an
sm

is
si

on
 r

at
e 

[%
]

Fig. 5. Experimental setup: Multi-path connection between client and server.
The connection which has the smaller RTT is turn off by removing the IP
configuration of the related interface on the client to emulate a connection
loss.

cause significant unnecessary reinjection of packets.

V. CONCLUSION

The sudden loss of a connection path leads to retransmission
of in-flight packets. For fast reinjection of packets a rapid
detection of the loss is essential. The in-depth analysis of
the usual single-path TCP behavior for retransmission timouts,
which is transferred to MPTCP to trigger reinjections, shows
that the detection can last long due to minimal RTT timer
values, tail loss probe, and timer activation.

The implementation of a new timer, which handles reinjec-
tion separately, shows a significant improvement in application
level delays. Furthermore, experiments in scenarios with loss
and jitter do not show a significant increase of suspicious
retransmissions.

REFERENCES

[1] M. Trevisan, D. Giordano, I. Drago, M. M. Munafò, and M. Mellia, “Five
years at the edge: Watching internet from the isp network,” IEEE/ACM
Trans. Netw., 2020.

[2] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom,
“Measuring latency variation in the internet,” in ACM CoNEXT, ser.
CoNEXT ’16, New York, NY, USA, 2016, p. 473–480. [Online].
Available: https://doi.org/10.1145/2999572.2999603

[3] N. Dukkipati, N. Cardwell, Y. Cheng, and M. Mathis, “Tail Loss Probe
(TLP): An Algorithm for Fast Recovery of Tail Losses,” Feb. 2013.
[Online]. Available: https://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-l
oss-probe-01

[4] M. Rajiullah, P. Hurtig, A. Brunstrom, A. Petlund, and M. Welzl,
“An evaluation of tail loss recovery mechanisms for tcp,” SIGCOMM
Comput. Commun. Rev., vol. 45, no. 1, p. 5–11, Jan. 2015. [Online].
Available: https://doi.org/10.1145/2717646.2717648

[5] M. Sargent, J. Chu, D. V. Paxson, and M. Allman, “Computing TCP’s
Retransmission Timer,” RFC 6298, Jun. 2011. [Online]. Available:
https://rfc-editor.org/rfc/rfc6298.txt

[6] P. Hurtig, A. Brunstrom, A. Petlund, and M. Welzl, “TCP and Stream
Control Transmission Protocol (SCTP) RTO Restart,” RFC 7765, Feb.
2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7765.txt

[7] A. Botta, A. Dainotti, and A. Pescapé, “A Tool for the Generation
of Realistic Network Workload for Emerging Networking Scenarios,”
Comput. Netw., vol. 56, no. 15, pp. 3531–3547, Oct. 2012.

[8] B. Hesmans and O. Bonaventure, “Tracing multipath tcp connections,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, p. 361–362, Aug.
2014. [Online]. Available: https://doi.org/10.1145/2740070.2631453


