
RTTPROBS: A RTT Probing Scheme for
RTT Aware Multi-path Scheduling

Ralf Lübben
Flensburg University of Applied Sciences

Flensburg, Germany
Email: ralf.luebben@hs-flensburg.de

Philip Wette
Robert Bosch GmbH
Hildesheim, Germany

Email: philip.wette@de.bosch.com

Sascha Gübner
Robert Bosch GmbH
Hildesheim, Germany

Email: sascha.guebner@de.bosch.com

Abstract—In multi-path scenarios, the default multi-path TCP
(MPTCP) scheduler prefers the subflow with the minimum
round-trip time (RTT) to send packets. Therefore, the scheduler
requires reliable and timely information on the RTTs for the
individual subflows to make proper scheduling decisions. We
show for various situations that a reliable and timely RTT
estimate is not always given. This shortcoming is induced from
the original TCP behavior that the RTT is only updated if data
is transmitted on a TCP flow. This means for MPTCP, that a
subflow, which suffers from a short-term RTT increase, may
not be selected again by the scheduler and so never gets an RTT
update. Moreover, we demonstrate for various scenarios, that this
leads to non-optimal scheduling decisions. We propose an RTT
probing scheme to achieve reliable and timely RTT updates. Our
probing scheme is designed for a fast reaction as well as little
probing traffic. The advantages are demonstrated in emulated as
well as real-world vehicular experiments.

I. INTRODUCTION

Due to the widespread deployment of devices with several
network interfaces, like Smartphones, the usage of multi-
path transport protocols become more and more expedient.
Especially, MPTCP is already deployed for example in Ap-
ple’s iOS and MacOS and is going to become prevalent in
Linux based devices, such as Android Smartphone, by the
recent integration of MPTCP in the mainline kernel. The
concurrent use of multiple paths for data transmission offers
improvements in data rate, reliability, and end-to-end latency.
However, to exploit these benefits, a sophisticated scheduling
decision has to be made for each packet. Current state-of-
the-art transport layer multi-path approaches such as MPTCP,
MPQUIC, or CMP-SCTP rely on information provided by
individual subflows. Characteristics that are typically measured
or estimated are the round-trip time and the congestion win-
dow to adapt the transmission of data to the characteristics
on individual subflows in multi-path scenarios. The default
scheduler in MPTCP and MPQUIC, for example, relies on
RTT measurements for its scheduling decision. In detail,
packets are scheduled on the subflow with the lowest RTT first
until the subflow becomes unavailable, e.g. by an exhausted
congestion window. Afterwards, the subflow with the second
lowest RTT is selected.

This minimal RTT (minRTT) scheduler is a rational ap-
proach, since first the subflow with the lowest RTT is selected
to guarantee transmissions with minimal latency. Only if the
capacity of the subflow is not sufficient, additional subflows

are used in the order of increasing RTT of the respective
subflow. The RTT is a viable metric, as it does not only
include the transmission and propagation delay, but also
accounts for queuing delays and delays due to lower layer
retransmissions. These are, for example, common in wireless
networks with variable link quality. Therefore, the RTT metric
also reflects the load and the reliability of the subflow. The
default scheduler is mentioned in [1] and evaluated in [2].
Besides the default scheduler, various other schedulers rely
on RTT estimates, e.g. [3], [4], [5], [6].

However, single-path TCP only measures the RTT if data
packets are in flight, by measuring the time a packet sent until
the related acknowledgment arrives. Therefore, if no data is
sent, the RTT is not estimated. In single-path protocols, this is
acceptable because there is no scheduling decision. Moreover,
loss-based congestion protocols, such as NewReno and Cubic,
do not consider the RTT for congestion control and as far as
data is transmitted on the single-path, the RTT is updated.

Opposed to this, we contribute, that in multi-path scenarios
an outdated RTT estimate leads to sub-optimal scheduling de-
cisions. From observations in the scenarios, we deduce various
criteria for a probing scheme to update the RTT on used
subflows. We propose RTTPROBS, an RTT probing scheme
that reacts fast on RTT changes but still avoids excessive
probing traffic. The scheme is evaluated in various scenarios
to measure the benefits and the overhead induced by probing.

The outline of the paper is as follows: The single-path
TCP estimation procedure and the related work is presented
in Sec. II. Sec. III introduces scenarios in which an outdated
RTT measurement occurs. Sec. IV presents RTTPROBS that
is evaluated in Sec. V. Sec. VII concludes the findings.

II. RELATED WORK

Single-path TCP updates the RTT only if data is sent
and related acknowledgments arrive at the sender. It uses an
exponentially weighted average

SRTT = (1− α)SRTT + αCRTT, (1)

with the smoothed RTT SRTT, the current RTT measurement
CRTT, and α = 1

8 as defined in [7]. CRTT values may
be gathered from measuring the interval from sending data
and reception of related acknowledgments according to Karn’s
algorithm [8] or estimated from TCP timestamps, see [9].

Accepted IEEE VTC 2021 Spring ©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



0

12

24
ne

tw
or

k
th

ro
ug

hp
ut

[M
B

it/
s]

subflow 1 subflow 2

0

20

40

ap
pl

ic
at

io
n

th
ro

ug
hp

ut
[M

B
it/

s]

0

50

100

T
C

P
SR

T
T

[m
s]

0

50

100

pi
ng

R
T

T
[m

s]

0 20 40 60 80 100
time [s]

0

75

150

ap
pl

.d
el

ay
[m

s]

(a) Emulation

0

10

20

ne
tw

or
k

th
ro

ug
hp

ut
[M

B
it/

s]

celluar wifi

0

25

50

ap
pl

ic
at

io
n

th
ro

ug
hp

ut
[M

B
it/

s]

0
50

100
150

T
C

P
SR

T
T

[m
s]

0

125

250

pi
ng

R
T

T
[m

s]
0 20 40 60 80 100

time [s]

0
150
300
450

ap
pl

.d
el

ay
[m

s]

(b) Wi-Fi Scanning

0

100

200

ne
tw

or
k

th
ro

ug
hp

ut
[M

B
it/

s]

provider 1 provider 2

0

110

220

ap
pl

ic
at

io
n

th
ro

ug
hp

ut
[M

B
it/

s]

0

100

200

T
C

P
SR

T
T

[m
s]

0

500

1000

pi
ng

R
T

T
[m

s]

0 20 40 60 80 100
time [s]

0

350

700

ap
pl

.d
el

ay
[m

s]

(c) Bufferbloat

Fig. 1. Various examples of network scenarios in which an outdated RTT estimate leads to sub-optimal scheduling decision. In (a) the decrease of path RTT
is not recognized, in (b) Wi-Fi scanning leads to short-term increasing RTT and causes permanent shift of data traffic, in (c) bufferbloat causes a strong RTT
increase, which lead to outdated RTT measurements.

0

12

24

ne
tw

or
k

th
ro

ug
hp

ut
[M

B
it/

s]

subflow 1 subflow 2

0

20

40

ap
pl

ic
at

io
n

th
ro

ug
hp

ut
[M

B
it/

s]

0

50

100

T
C

P
SR

T
T

[m
s]

0

50

100

pi
ng

R
T

T
[m

s]

0 20 40 60 80 100
time [s]

0

75

150

ap
pl

.d
el

ay
[m

s]

(a) Emulation

0

10

20

ne
tw

or
k

th
ro

ug
hp

ut
[M

B
it/

s]

celluar wifi

0

25

50

ap
pl

ic
at

io
n

th
ro

ug
hp

ut
[M

B
it/

s]

0
50

100
150

T
C

P
SR

T
T

[m
s]

0

125

250

pi
ng

R
T

T
[m

s]

0 20 40 60 80 100
time [s]

0
150
300
450

ap
pl

.d
el

ay
[m

s]

(b) Wi-Fi Scanning

0

100

200

ne
tw

or
k

th
ro

ug
hp

ut
[M

B
it/

s]

provider 1 provider 2

0

110

220

ap
pl

ic
at

io
n

th
ro

ug
hp

ut
[M

B
it/

s]
0

100

200
T

C
P

SR
T

T
[m

s]

0

500

1000

pi
ng

R
T

T
[m

s]

0 20 40 60 80 100
time [s]

0

350

700

ap
pl

.d
el

ay
[m

s]

(c) Bufferbloat

Fig. 2. Repetition of the scenarios of Fig. 1 with the implementation of RTTPROBS, which updates the RTT and improves the scheduling decision. In (a) the
decrease after the long-lasting RTT is detected and enforce data traffic to the subflows with the lower RTT, in (b) the Wi-Fi path is used after the scanning
process is finished, in (c) both subflows are utilized more equally.

Only updating the RTT on data transmissions is sufficient
for single-path protocols. If no traffic is sent, the RTT requires
no update. If traffic is sent, the RTT is updated immediately
by arriving acknowledgments.

Nevertheless, this behavior changes in multi-path protocols
if the RTT is included for scheduling decisions [3], [4], [5],
[6] as well as congestion control algorithm decisions [10],
[11], [12], [13], [14], [15]. The scheduler requires an up-to-
date estimate for all active subflows for an optimal decision,
even if no data is scheduled on the subflows. In current im-
plementations, only subflows on which packets are scheduled
receive updates of the RTT. A high RTT variation as prevalent
in cellular networks, see [16], makes things worse.

The issue of an outdated RTT estimate is already raised
in [17] for thin streams, e.g. streams that typically do not
utilize all subflows of a multi-path connection. A scheme is
proposed, that probes the subflows with constant multiplier
of the RTT. Opposed to this work, we propose an adaptive
scheme that accounts for short-term and long-term changes
and reduces the probing traffic. Furthermore, we show that
the underlying problem applies to further scenarios besides
thin streams.

So far, single-path TCP only implements keepalives, but due
to [18], the first keepalive is sent after 2 hours by default. Also
keepalive packets and related acknowledgments do not update
the SRTT.



III. SCENARIOS

In this section, we evaluate three typical scenarios, in which
an outdated RTT leads to sub-optimal scheduling decisions.
Whereas the first scenario is an artificial setup in an emulated
testbed to emphasize the problem, the later two are from real-
world networks.

A. Basic: Alternating RTT

In this first scenario, a simple network is emulated, in which
one path has a constant RTT of 60 ms and the second path
features an alternating RTT of 30 ms and 90 ms, respectively.
Each subflow has a capacity of 30 MBit/s and the application
data rate is tuned to be 20 MBit/s, i.e. the throughput is
application limited, e.g., emulating a constant bitrate video
streaming application. The application level values are mea-
sured by D-ITG [19], network layer throughput is measured
from packet traces, TCP RTT is extracted from TCP’s probing
facility included in the Linux networking stack, and ping
is used to obtain network level delays. Fig. 1a presents the
application and network throughput, the RTT measurements
performed by the TCP subflows and from a simultaneous
ping measurement, and the application delay.

We observe, that at about 25 s, the RTT of the first subflow
increases above the RTT of the second subflow. Consequently,
the traffic is shifted to that second subflow. After the switch,
the TCP SRTT is not updated for the first subflow, since no
packets are scheduled on it. So the decrease of the RTT at
about 60 s is not detected, although the first subflow would
be the better choice now.

B. Wi-Fi Scanning

In this real-world experiment, we create a static setup using
one Wi-Fi and one cellular network, e.g. as in hybrid access
networks [20]. We switch the Wi-Fi network on and off
repeatedly, which triggers the deletion and creation of MPTCP
subflows. The network level RTT measurements indicate that
the Wi-Fi network is available from time 0 s to 25 s and 60 s
to 90 s. We limit the application throughput to a packet rate of
1250 pkt/s with a packet size of 1000 bytes. The Wi-Fi hotspot
is connected to the Internet using a digital subscriber line with
a capacity of about 13 MBit/s and the cellular connection
typically achieves a data rate of more than 100 Mbit/s in the
downlink.

We observe in Fig. 1b, that the RTT is slightly smaller for
the Wi-Fi connection in comparison to the cellular connection.
But if the Wi-Fi device starts scanning for networks, it
stops forwarding packets on the current active connection
to switch the channel frequency. This causes an increase in
the RTT, which is greater than the RTT experienced in the
cellular network. Therefore, the scheduler selects the cellular
network and does not return to the Wi-Fi network, which is
indicated by the network throughput as well as the TCP SRTT
measurement in the figure. After the first peak in the SRTT
measurement the scheduler prefers the cellular connection and
the SRTT measurement is not updated again, even if the RTT
decreases as indicated by the ping measurements. The SRTT

measurement shows peaks at about 10 s and 70 s, afterwards
the subflow is not used anymore until the Wi-Fi network is
toggled and a new subflow is created. The optimal behavior
in this situation would be to use the Wi-Fi connection directly
after its RTT decreases again.

C. Bufferbloat

In this scenario, we target at the aggregation of two cellular
connections, each features usually a capacity significantly
above 100 MBit/s. Cellular networks typically deploy large
buffers in the network, see e.g. [21], [16]. The experiments are
executed in a static urban real-world cellular network with two
independent cellular network providers. In [22], we already
demonstrated that large buffers inside the network require
large buffers at the sender and receiver for a full utilization of
the subflows. If buffers are small, the performance is non-
optimal, whereas the effect is even amplified by outdated
RTT measurements. Fig. 1c presents the utilization of the two
cellular networks. The application is greedy, but the throughput
is limited by the buffer size setting at the sender and receiver1.
The results indicate a preference of one provider, the second
provider is only used sporadically. For example, at time 2 s
and 43 s, the SRTT increases and the related subflow is not
used for a notable interval. Furthermore, missing measurement
points in the graph indicate, that no ACK arrives and the SRTT
is not updated. Especially, this effect is visible at about 17 s,
when the SRTT of the first provider increases, which leads to
an update of the SRTT and the usage of the flow.

IV. RTT PROBING

The previous section indicates the need for a timely RTT
estimate if scheduling decisions use RTT measurements. The
main reasons for outdated and over-estimated measurements
are bufferbloat, network jitter, or scanning in Wi-Fi networks.

Since TCP only updates the RTT estimate if an ACK of
previously sent data is received, a subflow never receives an
update without data transmitted. Therefore, a probing scheme
is required to enforce an update in multi-path protocols.
As carved out in the previous section, multiple reasons are
responsible for outdated measurements that can last for a
short or long duration. Hence, a probing approach has to
account for these different timescales. For example, when to
probe a subflow depends on various parameters: The extent
of bufferbloat at intermediary devices, the ratio of RTTs of
the available subflows, the link capacity of the overloaded
segment, or the decline of the short-term increase of delays
in wireless networks. As we show, these are due to network
operations such as scanning for available networks or handover
between different cells in wireless networks. These volatile
characteristics require a probing that accounts for short-term
increase as well as long-lasting increase of delay.

Furthermore, TCP implements an exponential weighted
averaging for RTT estimates, so that a single estimate is
not sufficient to reduce an outdated measurement to the

1Sender buffer and receive buffer size are 4 MByte and 6 MByte respec-
tively, the default settings in Linux operating system.



current value. Therefore, we develop RTTPROBS to meet the
following criteria:

1) Timely update if the new RTT estimate reflects a signif-
icant decrease in RTT.

2) Fade out probing if RTT estimates do not indicate a
significant decrease in RTT.

3) Avoid probing if no application traffic is transmitted.
For the first criteria, the RTT probing starts with short inter-
probing intervals, if the subflow has no packets in flight. The
interval doubles if the RTT estimate does not decrease. If the
RTT estimate decreases, the probing interval decreases fast to
trigger further updates.

In detail, the first RTT probe is scheduled in the interval
RTTmin if the subflow is not selected and has no packets in
flight. The value RTTmin is the minimal RTT observed in a
window of k seconds, by default k = 300 in Linux. Therefore,
this values gives a rough estimate of the end-to-end delay
excluding queuing delays. The probing interval doubles after
each probing, if the new estimate does not indicate a decrease
of the RTT estimate. So the probing interval p is

p = 2nRTTmin (2)

with n = {0, 1, 2, 3, ...nmax}. The parameter n is increased
up to a maximal value to also detect a decreasing RTT after a
long-lasting RTT increase. We set nmax = 7, so with an RTT
of 30 ms the subflow is probed each 3.84 s.

If the current RTT estimate decreases, the new probing
interval is 2max(0,n−θ)RTTmin with

θ =

⌊
SRTT

CRTT

⌋
+ 1 (3)

So θ accounts for the relation of the previous SRTT measure-
ment and the current RTT estimate, i.e. if the new estimate
is close to the previously seen SRTT , the decrease of the
probing interval decreases by the relation, i.e. a sudden strong
decrease speeds up the probing more than a small decrease.

Using RTTPROBS, we account for short-term as well as
long-term effects with little probing traffic of 1 packet in the
interval 2nmaxRTTmin.

To account for the last criteria, the probing is implemented
by a timer started by the MPTCP scheduler only if data is
transmitted. The timer is started if a subflow has no packets
in flight, the subflow is not selected for transmission by the
current scheduled packet, and the timer is not already pending.
Therefore, probe packets are only scheduled if the application
transmits data.

A. Implementation

The approach is implemented in the Linux kernel based
on MPTCP 0.95.1. As described in [18], a probe packet is
sent with the next expected sequence number minus one. For
a reliable RTT estimation, we rely on TCP timestamps to
explicitly match probe packets and related acknowledgments,
since a receiver may silently discard probe packets due to
rate limiting for duplicate acknowledgments as implemented

in the Linux OS. A Linux TCP network stack sends a duplicate
acknowledgment at most each 500 ms by default.

Furthermore, TCP senders and receivers do not update the
recent timestamp on probe packets. Therefore, we modify the
network stack such that a receiver returns an acknowledgment
packet in response to a probe packet with a recent timestamp
and modify the probing packet sender to update the RTT on
the reception of probe packets acknowledgments.

RTTPROBS is implemented by a new timer. However,
we want to emphasize that, due to different time-scales, the
approach may reuse the already existing TCP keepalive timer.

V. EVALUATION

In this section we repeat the experiments from Sec. III with
the implementation of RTTPROBS described in Sec. IV. We
use the Linux operating system with MPTCP enabled kernel
version 4.19, MPTCP version 0.95.1 and the default conges-
tion control algorithm, Cubic [23]. The network throughput is
derived from packet traces recorded with tcpdump, the appli-
cation throughput and delay is extracted from D-ITG, and the
SRTT is recorded by TCP’s ftrace implementation. Note,
that the SRTT is recorded on each incoming acknowledgment,
i.e. if no packets are sent and no acknowledgments arrive
no point is plotted and the SRTT is not updated. To receive
timely updates, we disable the rate limitation for duplicate
acknowledgments for all following experiments.

A. Alternating RTT

The improvement of RTTPROBS is presented in Sec. IV
for the scenario from Sec. III-A and is shown in Fig. 2a. Due
to the probing, the subflow receives continuous RTT updates
and switches back to the subflow with the lower RTT.

Still, the interval between the network layer RTT returns to
the low delay value (indicated by RTTs measured by ping)
and the handover is about 5 s. This accumulates from the
maximum probing interval of about 27RTTmin ≈ 4 s plus
multiple measurements until the smoothed RTT decreases
below the RTT of the second subflow. Due to the adaptive
probing scheme, if a decrease is detected the probing is speed
up and the RTT estimate is updated fast.

B. Wi-Fi Scanning

In Sec. III-B, we showed that the scanning in a Wi-Fi
network increases the RTT and leads to usage of the cellular
network only, which features a slightly larger RTT. After the
client starts a scan, the Wi-Fi network is not used again, due
to outdated and large RTTs during the scanning process.

As described in Sec. IV, the RTTPROBS reacts fast on
short-term increases of the RTT. The results are demonstrated
in 2b. During the scanning at about 5 s, 55 s, 65 s, the
delay of the Wi-Fi connection increases. Hence, the scheduler
shifts packets to the cellular connection. Due to the improved
probing, the RTT is updated timely and decreases after the
scanning. Therefore, the scheduler utilizes the Wi-Fi connec-
tion again.

In the previous section Sec. V-A, the RTT increase lasted
about 30 s. Here, the period is much shorter due to the adaption



of the probing interval. It reacts much faster and returns to the
original subflow due to updated RTT estimates.

C. Bufferbloat

Sec. III-C indicates that a short increase of the SRTT of one
provider, leads to long-term degradation of this provider.

Packets are only scheduled if the SRTT measurement of the
current selection subflows increases above the previous level.
Fig. 1c shows this transition between providers. RTTPROBS
shows a more frequent usage of the provider in Fig. 2c without
large gaps as indicated in Fig. 1c.

VI. CELLULAR EXPERIMENTS

In [24] and [22], we already showed that MPTCP does not
fully utilize the connection paths. This is due to an interaction
of buffer size of the receive and send window, the conges-
tion control, as well as deep queues existing inside cellular
networks [21]. We showed in [24] and [22] that buffer size
tuning, congestion control selection, and also probing improve
the utilization. Here, we evaluate in detail the RTTPROBS in
a buffer constraint cellular and vehicular scenario.

For the measurements, a x86 mini computer is equipped
with two LTE category 12 modems. For measurements of
the position and accurate time synchronization the embedded
global navigation satellite system receiver included in the
modem is used. Each modem is connected to two antennas. For
the static position experiment, the antennas are placed indoor.
For the vehicular experiment the equipment is placed inside a
vehicle.

The implementation and software version is the same as
described in Sec. V. Measurements are performed in the
downlink direction from a cloud server to the vehicle.

Each measurement is performed for 5 s with a greedy
traffic source. To compare the probing approach to the reg-
ular implementation without probing, measurements with and
without probing are taken in turns to avoid temporal and
spatial effects. The buffer size for the connection is limited to
typical values of 2 MByte for the sender buffer and 3 MByte
for the receiver buffer. For the vehicular experiment, the
measurements are performed along an urban track of about
10 km and 41 measurements are collected with and without
RTTPROBS. For the static experiment 30 runs were performed
at a fixed position. The figures Fig. 4 and Fig. 5 show the
statistical analysis as boxplots, including the median, the 25th
and 75th percentile as box, and the whiskers as the minimal
and maximal value. To compare the approaches the average
delay, the throughput, and the minimal traffic share of both
providers are analyzed. Fig. 3 compares two time series of
throughput, SRTT, CWND, and application delay from the
vehicular experiment. We observe in Fig. 3a that without a
probing scheme only one provider is used for a long-lasting
duration after the increase of the SRTT. A switch only occurs
after a related SRTT increase. On the other hand, in Fig. 3b
we see a more evenly distributed traffic between providers.
The aggregated throughput is similar in both examples, due
the buffer constraints that limit the maximal throughput.

0

100

200

ne
tw

or
k

th
ro

ug
hp

ut
[M

B
it/

s]

provider 1 provider 2

0

100

200

ap
pl

ic
at

io
n

th
ro

ug
hp

ut
[M

B
it/

s]

0

110

220

T
C

P
SR

T
T

[m
s]

0 1 2 3 4 5
time [s]

0

110

220

ap
pl

.d
el

ay
[m

s]

(a) without probing

0

100

200
ne

tw
or

k
th

ro
ug

hp
ut

[M
B

it/
s]

provider 1 provider 2

0

100

200

ap
pl

ic
at

io
n

th
ro

ug
hp

ut
[M

B
it/

s]

0

110

220

T
C

P
SR

T
T

[m
s]

0 1 2 3 4 5
time [s]

0

110

220

ap
pl

.d
el

ay
[m

s]

(b) with probing

Fig. 3. Two time series of network, application throughput, SRTT and appl.
delay for the vehicular experiment with and without probing. The series show
that for large intervals only one provider is used without the proposed probing
approach in (a). These gaps are significantly reduced using RTTPROBS as
highlighted in (b).

The statistical analysis in Fig. 4 and Fig. 5 with and without
probing presents the analysis of the average delay during the
measurement, the average throughput, and the utilization of
the subflows. We observe an improvement for all metrics due
to RTTPROBS. The delay is reduced and at the same time the



without with
probing

0.045

0.050

0.055

0.060

0.065

av
er

ag
e 

de
la

y 
[s

]

(a) average delay

without with
probing

75

80

85

90

95

100

105

110

115

th
ro

ug
hp

ut
 [M

B
it/

s]

(b) throughput

without with
probing

10

20

30

40

50

pa
th

 u
til

iz
at

io
n 

[%
]

(c) utilization

Fig. 4. Comparison of end-to-end quality for static cellular scenario. With
the implementation of RTTPROBS the average delay and its variance de-
creases (a), at the same time the throughput increases by about 5% (b), and
moreover the traffic is distributed more equally between the subflows (c), it
increases from only about 18 % to about 36%.

without with
probing

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e 

de
la

y 
[s

]

(a) average delay

without with
probing

20

40

60

80

100

120

th
ro

ug
hp

ut
 [M

B
it/

s]

(b) throughput

without with
probing

0

10

20

30

40

50

pa
th

 u
til

iz
at

io
n 

[%
]

(c) utilization

Fig. 5. Comparison of end-to-end quality for the vehicular experiment.
Similar to the previous experiment, there little improvement in delay (a)
and throughput (b), but the traffic is distributed more equally between the
subflows (c), the utilization increases in average from 15% to about 29%.

throughput increases. The decrease in delay and increase in
throughput is more dominant in the static scenario, here, the
delay decreases and at the same time the throughput increases
by 5%. The cellular scenario only show little improvement
in delay and throughput due to similarity of the providers. In
both scenarios, the traffic is balanced more equally between
the subflows if probing is used. This guarantees the selection
of the better path.

VII. CONCLUSION

In this paper, we first emphasize the need for up-to-date RTT
estimates in multi-path protocols. We demonstrate in various
scenarios that an outdated RTT estimate leads to sub-optimal
scheduling by the default MPTCP scheduler, which uses the
SRTT as decision criteria. The outdated estimate originates
from the usual TCP behavior that the RTT estimate is only
updated if data is transmitted. To improve the behavior we
introduce RTTPROBS, a probing scheme that on the one hand
reacts to short-term as well as long-term RTT changes of the
subflows that are currently not used for data transmission. On
the other hand, it avoids extensive probing traffic. The benefit
is demonstrated in the aforementioned scenarios and is further
evaluated in a real-world vehicular scenario. The vehicular

experiment demonstrates that our proposal reduces the delay,
while simultaneously increasing the throughput and balancing
the traffic between subflows more equally.

REFERENCES

[1] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How Hard Can It Be? Designing and
Implementing a Deployable Multipath TCP,” in Proc. USENIX NSDI ,
Apr. 2012, pp. 399–412.

[2] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
Evaluation of Multipath TCP Schedulers,” in Proc. ACM SIGCOMM
Workshop on Capacity Sharing Workshop, 2014, pp. 27–32.

[3] F. Yang, Q. Wang, and P. D. Amer, “Out-of-Order Transmission for In-
Order Arrival Scheduling for Multipath TCP,” in Proc. IEEE WAINA,
2014, pp. 749–752.

[4] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“DAPS: Intelligent Delay-aware Packet Scheduling for Multipath Trans-
port,” in Proc. ICC, 2014, pp. 1222–1227.

[5] S. Ferlin, O. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
Estimation-based MPTCP Scheduler for Heterogeneous Networks,” in
Proc. IFIP Networking), 2016, pp. 431–439.

[6] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path Transport over Het-
erogeneous Wireless Networks: Does it really pay off?” in Proc. IEEE
Globecom, 2014, pp. 4807–4813.

[7] M. Sargent, J. Chu, D. V. Paxson, and M. Allman, “Computing TCP’s
Retransmission Timer,” RFC 6298, Jun. 2011.

[8] P. Karn and C. Partridge, “Improving Round-Trip Time Estimates in
Reliable Transport Protocols,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 17, no. 5, pp. 2–7, Aug. 1987.

[9] D. Borman, R. T. Braden, V. Jacobson, and R. Scheffenegger, “TCP
Extensions for High Performance,” RFC 7323, Sep. 2014.

[10] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
Implementation and Evaluation of Congestion Control for Multipath
TCP,” in Proc. ACM USENIX NSDI, 2011, pp. 99–112.

[11] C. Raiciu, M. J. Handley, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” RFC 6356, Oct. 2011.

[12] R. Khalili, N. G. Gast, M. Popovic, and J.-Y. L. Boudec, “Opportunistic
Linked-Increases Congestion Control Algorithm for MPTCP,” IETF,
Individual Submission, Internet Draft, Jul. 2014.

[13] A. Walid, Q. Peng, J. Hwang, and S. H. Low, “Balanced Linked Adap-
tation Congestion Control Algorithm for MPTCP,” IETF, Individual
Submission, Internet Draft, Jan. 2016.

[14] Yu Cao, Mingwei Xu, and Xiaoming Fu, “Delay-based Congestion
Control for Multipath TCP,” in Proc. IEEE ICNP, 2012.

[15] S. Ferlin, O. Alay, T. Dreibholz, D. A. Hayes, and M. Welzl, “Revisiting
Congestion Control for Multipath TCP with Shared Bottleneck Detec-
tion,” in Proc. IEEE INFOCOM, 2016.

[16] Y. Chen and D. Towsley, “On Bufferbloat and Delay Analysis of
Multipath TCP in Wireless Networks,” in Proc. IFIP Networking, 2014.

[17] A. Froemmgen, J. Heuschkel, and B. Koldehofe, “Multipath TCP
Scheduling for Thin Streams: Active Probing and One-Way Delay-
Awareness,” in Proc. IEEE ICC, 2018.

[18] R. T. Braden, “Requirements for Internet Hosts - Communication
Layers,” RFC 1122, Oct. 1989.

[19] A. Botta, A. Dainotti, and A. Pescapé, “A Tool for the Generation
of Realistic Network Workload for Emerging Networking Scenarios,”
Comput. Netw., vol. 56, no. 15, pp. 3531–3547, Oct. 2012.

[20] N. Keukeleire, B. Hesmans, and O. Bonaventure, “Increasing Broad-
band Reach with Hybrid Access Networks,” IEEE Comm. Standards
Magazine, vol. 4, no. 1, pp. 43–49, 2020.

[21] N. Becker, A. Rizk, and M. Fidler, “A Measurement Study on the
Application-level Performance of LTE,” in Proc. of IFIP Networking,
Jun. 2014.

[22] R. Lübben and J. Morgenroth, “An Odd Couple: Loss-Based Congestion
Control and Minimum RTT Scheduling in MPTCP,” in Proc. IEEE LCN,
October 2019.

[23] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
Jul. 2008.

[24] R. Lübben and J. Schwardmann, “Application Level Performance Mea-
surements of Multi-Connectivity Options in Cellular Networks for
Vehicular Scenarios,” in Proc. IEEE LCN, Oct. 2019.


